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Preface

From ancient Greel times, music has been seen as a mathematical art.
Some of the physical, theoretical, cosmological, physiciogical,
acoustic, compositional, analytical and other implications of the rela-
sionship are explored in this book, which is suitable both for musical
mathematicians and for musicians interested in mathematics, as well as
for the general reader and listener.

In a collection of wide-ranging papers, with full use of Hlustrative
material, leading scholars join in demonstrating and analysing the con-
tinued vitality and vigonr‘of the traditions arising from the ancient
beliefs that music and mathematics are fundamentally sister sciences.
This particular relationship is one that has long been of deep fascina-
tion to many people, and yet there has been no book addressing these
issues with the breadth and multi-focused approach offered here.

This volume is devoted to the memory of John Fauvel, Neil Bibby,
Charles Taylor and Robert Sherlaw Johnson, whose untimely deaths
occurred while this book was being completed.

Raymond Flood
February 2003 Robin Wilson




Ancient harmonic discoveries are portrayed in
this woodcut from Franchino Gafurio’s
Theorica musice (1492). Mathematical ratios
are emphasized in the experiments attzibuted
1o Pythagoras.

CHAPTER I

Tuning and temperament: closing
the spiral

Neil Bibby

In Ancient Greek times it was recognized that consenant nusical sounds
velate to simple number ratios. Nevertheless, in using this insight to construct
a scale of notes for tuning an instrument, problems arise. These problams are
especially noticeable when framposing tunes se that they can be played in
different keys. A solution adopted in Buropean music over the last few
centuries has been to draw upon mathematics in a different way, and o
devise an ‘equally-tempered’ scale.

Bach musical note has a basic frequency {essentially, the number of
times the sound pulsates in a given peried of time): thus the note A,
which you may hear the oboe play while an orchestra is tuning up, has
& frequency of 440 Hz (cycles per second). Frequency enables us to talk
about relationships berween musical sounds. However, for purposes of
comparing two notes, the actual frequency is less important than the
ratio of their frequencies.

The structure of a musical scale is determined by the frequency
ratios of the notes that form the scale. The choice of these ratios is ultim-
ately governed by the degree of consonance between the notes.
Consonance is both a psychological and a physical criterion: two notes
are consenant if they sound pleasing’ when played together, In physical
terms this seems to occur when the frequency ratio of the two notes is
a ratio of low integers: the simpler the ratio, the more consonant are
the two notes.

Apart from the tzivial case of a unison, for whick the frequency ratio
is 1:1, the sirplest case is the frequency ratio 2:1. When two notes
have this frequency ratio the interval between them is an octave: thus,
for the oboe A, the next higher A has frequency 880 Hz. The origins of
this interval may ke in pre-history, when the earliest atternpts at group
singing or chanting would have been in unison, or in octaves for mixed
groups of adults, or men and children: the different vocal ranges of the
participants would thus force the harmonic use of the octave instead of
the unison. As a melodic interval the octave is not comumon, but three
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wert Fludd's Temple of music
1), showing Pythagoras
cksmmith’s forge.

popular twentieth-century American songs that start with a rising
octave are Somewhere over the tainbow;, Singin® in the rain, and Bali Hai.

This simple frequency relationship of 2:%, corresponding 0 two
notes forming an octave, is the basis for the construction of any mus-
ical scale. Mathematically, the problem of constructing the scale is to
determine an appropriate set of frequency ratios for the notes that lie
in berween. The mumber of these interpolated notes is arbitrary from a
mathematical point of view. However, the frequency ratios of the
intervening notes must satisfy the psychological/aesthetic criterion of
consonance. Ultimately, as we shall see, the mathematical criterion of
simplicity that underlies the early notion of consonance yields to other
mathernatical criteria. It turns out that the tolerance of the human ear,
together with natural conditioning, enables the ‘simplicizy” criterion to
be partially relaxed.

The Pythagorean scale

The oldest system of scale construction is that described as the
Pythagorean scale. ‘The systern is much alder thar Pythagoras (550 BC),
but his name is associated with the theozetical justification, in mathe-
matical terms, of its construction. Legends have come down to us,
through the late Roman writer Boethins among others, relating how
Pythagoras “discovered’ this scale: they alleged that Pythagoras noted
the harmonious relationships of the sounds produced by the hammers
in a blacksmith’s forge, and further investigations revealed that the
masses of these hammers were, extraordinarily in simple whole-
pummber ratios to each other! From this claimed observation Pythagoras
is supposed to have leapt to the realization that consonant sounds and
simple number ratios are correlated—that ultimately music and math-

ernatics share the same fundamental basis.
It is not difficult to construct a scale by following the Pythagorean
insight. The strategy is to take any note and produce others related to
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it by simple whole-number ratios, in the confidence that on Pythagorean
principles the resultant notes will sound consonant. The strucrure
of suzch a scale is ultimarely based on the simple frequency ratios of 2: 1
and3: 1.

In the case of a plucked or bowsed string, different notes may be
produced depending on how the stzing vibrates, and this too seems to
follow the Pythagorean observation. Consider a vibrating string sounding
a note of frequency k.

The same string can also vibrate ar twice the original frequency, sound-
ing the note of frequency 2¢. The interval between the new and original
notes is giver by the ratio of the frequendes, 2t:¢f or 2:1, an octave.

If the string were to vibrate with three times the original frequency, it
would sound a note of frequency 3t

The interval between the motes of frequencies 3t and 2t is 3:2,
or 5. Beuivalently, the note an octave below 3t is 2r, and the interval
between the note with frequency t and this note is therefore Z

We now have 2 three-note scale {t, &, 213, If we regard the note with
frequency £ as the note C, for exampie, with ¢’ an octave higher, then
this scale is

C G c’
4 3t Zt

"This procedure has not only created a new note (G), but also a further
new interval, Our previous interval, between C and G, is called 2 perfect
fifth and the new interval between G and C' is calied a perfect fourth. The
ratio correspending to the perfect fifih is , as we have seen, while the
perfect fourth has ratio 2¢:3t, or §.

We now have a method for generating yet more notes. If we lower
the note G’ by a perfect fifth, by dividing its frequency by ¢, we obtain
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the note F of frequency #. It lies between C and G, and the resulting
scale is

C F G

¢ oL oa
The process by which the scale is generated is thus essentially iterative;
each new note yields a new interval with its nearest neighbour, and this
interval can then be used to generate further new notes.

By continuing in this way, we obtain the interval between F and G,
This is called the major second, or whole rone, and has ratio 3t:%,
ot §. This new interval in turn gives rise to a new note by simultane-
ously lowering both F and G by 1 perfect fourth: the new note, a whole
tone above C, is D. We can now use the whole tone interval to fill in the
gaps in the scale:

nameofnote C D E F G A B o
1 2 .4 2

frequency it - Hmbo 3t v Tr By i

: s ES 256 7 » 2 256

interval 7 i in 3 3 i i

Hach of the resulting narrow’ intervals E to I and B to C is a minor sec-
ond, or semitone, and has a ratio of §: 2, whichis £%. In addition, sev-
eral other new intervals appear, including the major third C to B, with
ratio 2, the major sixth C to A, with ratic &, and the major seventh C
to B, with ratio %2, We thus arrive at the Pythagorean scele, and we
denote the resulting set of notes by P.

An alternative view is to regard the scale as being formed by a suc-
cession of perfect fifths, starting from C. In this view, we form the five
notes that are successive fifths above C, and the note that is a perfect
fifth below C. We then reassebie these into a single octave,

o BB s

il (6} 1 (3

3
EEa o
B — %W\
== 3 ==
5

D SR o

¢ D E F G A B

The result of this process is equivalent 1o our earlier one. In the
resulting scale, successive notes are separated by an interval of a tone,
with ratio {, or a semitone, with ratio 2% The semitone is actually
smaller thap its name would suggest, because (E5) is less than 2—so it
is not a "serni’tone in any accurate sense! We shall see later that this
leads to serious problerms: for example, on a modern keyboard it seems
as though twelve perfect fifths are equivalent to seven octaves. However,
if the tuning is Pythagorean, this cannot possibly be the case, as we shall
see later,
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More generally, if we stick to octaves and perfect fifths, then only the
numbers 2 and 3 (and their powers) can be involved in these ratio
calculations. Thus, each note in the Pythagorean scale can be written
simply as 28-3%, where p and q are integers: here, and from now on, we
omit the facter &, The scale P can thus be represented as follows:

C 2 L F G A B <

1 3%2° 328 243 312 ¥ ki H

Bxploring further the way that the notes of the Pythagorean scale
combine, however, we run into a problem. Suppose that we wish to find
the note a major seventh above A {3°/2%: this note is 3°/2° X 3%/ =
3%/2". Lowering this by an octave, we get 3°/2"%, which must lie some-
where between G and A (since 3/2 < 3%/2' < 3%/2%. This leads us to
realize thit the Pythagorean scale is not ‘closed’ under transposition,
bur the rales under which we have constructed the scale wilt lead to an
indefinite pumber of new notes. This leads to problems if we want to
construct a scale (in particular, 2 physically embodied scale such as a
keyboard) that allows transposition of keys.

Transposition in the Pythagorean scale

We constructed the Pythagorear scale P by a succession of transposi-
tions of the basic key note C: in each case we transposed up a fifth {mul-
tiplying it frequency by 1) and where necessary took the resulting
note down an octave (halving its frequency). A good way of seeing what
is going on in the problematic issae which has just arisen, of an appar-
ently indefinite number of new notes being produced, is to consider the
effect of the same transpositions on the entire scale P, Does this lead to
another Pythagorean scale, and are the same notes invoived?

Let us build a new scale on the note G. To do this, we transpose
the orginal Pythagorean scale P up by a fifth, and wanspose down
an octave when necessary. The resulting scale P! includes most of the
notes of B itself, as a result of the partial regularity of the distribution
of the intervals between the original notes:

[tone-tone-semitone}tone tone-tone-semitone].

However, there is a mew element, the note 3%/2%: this note
lies between the two existing notes F and G, since 22/3 < 38/2°<3/2.
‘This new note is the familiar B sharp, written B and is required
when we transpose from the scale of C to the scale of G. It does not lie

7




ematics

symmetrically between F and G, however, since the interval 3°/2"
berween F and B! is slightly greater than the interval 28/3% berween
Fland G.

c D E £ ¥ ¢ A B C
58

3 IR O 74 R /) A i | |

P! 1 32/23 3%6 36/29 % 3’35 35/27 2

In a similar way, a2 new scale can be built on the note F In this case
we divide the frequencies of each note by }, and where necessary trans-
pose up an octave, This new scale, which we may call ), again contains
a ‘rogue’ element, with frequency 2*/3°, which is the familiar B flag,
written B, of the key of K Again, this new note lies between two exist-
ing notes, A and B, since 3%/2% < 2%/3% <37/ 27, and again not symmet-
rically since 2%/3% is less than 37/2'%: thus, the new note is less than the
geometric mean of the two notes each side of it.

> D E F G A B B <
Py 32/23 . 3"25 ZIZ o % ) 372,4'- 3/27 2
il (| e %y Vsl |

P,

Continuing in this way, we successively generate a new note between
a pair of old notes, with each new note being slightly higher or lower
than the geometric mean of its neighbours. After six such transpositions
in each direction, we arrive at the scales P° and P, opposite, in each row
of which only one note (F or B, respectively) has survived from the orig-
inal scale P.

The notes of the top row correspond to the key of F* and those of the
bottom row correspond to that of G'. By comparing these two scales,
we can see that all of the notes of the G scale are slightly lower than
those of the F scale. In particular, under the transposition into the key
of F*, the original key note C has become 3°/2°, while under its trans-
position inte G it has become 2'%/3% The interval berween these notes
is (39/2°)/(2"°/3%), which simplifies to 3'2/2" or 1.01364 ... . This vexry
small difference, called the Pythagorean comma, lies at the root of the
contradictions inherent in the Pythagorean scale. Although 3'* and 2¥
are very close, they are not the same.

Furthermore, no succession of fifths can form an exact number of
octaves—for if it did, there would be integer solutions p and g to the
equation {2¥ = 24, or 57 = 2¢ *' 1. ‘This has no solutions, since no power
of 3 can equal a power of 2 (apart from the zeroth power), & particular

Pythagorean scales.
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¢ dp o g FF G & a As oo

¥ | (%% el Rl PR | »
p 3 %u 3‘26 3729 3212 3/3/24 3,5/ 2 E
P 3}21; 3223 3?26 3}29 3/2 3324 35/27 B
P 1 3223 3720 % % 3324 3727 t| G
r 1 3723 3725 223 3/;:; 3324 3?27 2 c
I3 1 3’23 2?3) 2’3 % 3’24 2}52 P
», h 3223 2533 223 Y% 2}3q 2"/32 7| B
s, 1 ?;/35 %, z’3 Y 2’54 ‘ 2}32 2l oa
P ! zzs 2735 2’/3 2‘3° ;%4 2732 R
b, %l B A% %l B |

¢ oo g E P G G & a4 3B C

case of a mathematical result {the uniqueness of prime factorization)
known since the tme of Buclid. However, the fact thar 3% is approx-
imately equal to 2" suggests that p = 12, 9 = 7 is an approximate solu-
tion, and that the “difference’ can be measured by the ratio 3%/2", the
Pythagorean comma.

We are thus faced with the fact that there is no end to the process we
have initiated: transposition up a fifth and transposition down a fifih
take us on infinite journeys, ever generating new notes, even if some of
these {as with G* and F*) are tantalisingly close. The journey can be
thought of as traversing a spira, stazting from our set P {represented by
C): for each 30° step clockwise we spiral outwards and transpose up 2
fifils, while for each 30° step anti-clockwise we spiral inwards and trans-
pose down a fifth (see overleaf), Adjacent points on the same ray of the
spiral differ by the Pythagorean comma,

Just intonation

Many of the intervals produced by the Pythagorean system are far from
simple: what started as a system of consonances involving only small
whole numbers has rarned out to be less simple than at first appeared.
For example the major third interval of (§)* = & and the major sixth

(&) and the semitone 28 involve relatively large numbers. However, it
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siral of Pythagorean fifths.
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s Important to note that musical intervals until the early renaissance
were essentially melodic intervais: they would be perceived as relation-
ships between suocessive notes, rather than as relationships between
notes sounded simultaneously.

By the time of the early renaissance, polyphonic music had started to
develop, and in addition to the harmonic use of ectaves, fifths and
fourths (hitherto, the only harmonic intervals generally employed),
there was a gradual adeption of thirds and sixths, The use of these
intervals Involved a modification of the Pythagorean mining under
which the third (&) became slightly flartened to &, or 3, and the sixth
also became slightly flazrened, rom B 1o #, o &

During the sixceenth century, various attempts were made to modify
the Pythagorean scale to incorporate these more consonant thixds and
sixths. The most notable of the reformers was Giuseppe Zarlino, choit-
master at St Mark’s in Venice. In 1558 he published Institutioni har-
moniche in which he proposed an alternative mathematical basts for the
major scale. He retained the Pythagorean relationships for the octave,
fifth and tomic (413 : 2), but formalized the earlier ad hoc modification of
the Pythagorean taning by adopting the simpler relationships of 6:5:4
for the perfect fifth, major third and tonic—that is, £ for the major third
and ¢ for the minor third. The scale he arzived at, known as the scale of
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just intonation, was as follows:

note ¢ D E F G A B ¢
1 b 5 4 3

frequency + §F %2 % % § % %

. 2 10 14 = 190 2 3

interval e T F R i

The frequencies of the notes of this scale can all be represented in the
form 2F-3%-5", where p, g and r are integers, and can be written as follows:

C D E F G A B c’
1 322 sfr M3 3/ 573 (a5 2

We shall refer to this set of notes as J. Several new intervals are
produced by this scale, For instance, while there are Pythagorean whole
tones(E) for C-D, F-G and A-B, {‘major tones’), there are also narrower
whole tones (‘minor tones’) for D-E and G-A of ¥, The ratio of these

N 210 . - .
WO intervals, §: %, the extent to which they are different tones, is called

the syntonic comma: H=3v/2t5) = 1.‘0225, exactly.

The frequency ratios of the just intonation scale occur naturally in
the ‘harmonic series’, and form the basis for playing certain wind instra-
ments. Indeed, in the case of the horn, the technique of playing
through using natural harmonics continued until valves were devel-
oped during the early nineteenth century. On the natural horn (without
valves) the harmonics produce the following written notes.
eplele &

#

XN
NN
e

¥ = @ 1

iz 3 4 35 &

Wi

~

8 9 10 ¢ 1 13 14 15 16

In this sequence the 2nd, 4th and 8th harmonics correspond to the
octave of the scale (that is, they are all the note C), and the 314, 6th and
12th harmonics sound G, the perfect fifth. The 9th harmonic sounds
the major tone (), which is the same in either Pythagorean or just into-
nation, whereas the 5th and 10th harmonics produce not the
Pythagorean major third (&), but the just major third (&). Thus far,
the natural harmonics are the same as just intonation. However, the
7th/14th, 11th and 13th harmonics (indicated with asterisks) produce
notes of £, 4 and 2, which are wildly out of mne on either Pythagorean
or just intonation. Players were expected to coax these notes into tune,
the eleventh harmenic being flattened to ¥ (3) and the seventh har-
monic being sharpened up to B (F). The English composer Benjamin
Britten made extraordinary use of thege notes in the solo horn pro-
logue of his Serenade for tenos, horn and strings, which is scored for natu-
ral horn, or for an orchestral horn where the player does pot use the
valves; the harmonics are indicated in the figure overleaf,

Within a single scale, just intonation formed a reasonably satisfactory
sohution to problems thrown up by Pythagoresn tunming, but the
compromise breaks down when one wants o play in another key
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Prologue to Britten's Serenade.

Mersenne’s keyboard with 31 notes to
the ocrave,

22
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Transposition with the just intonation scale is even more of a problem
than for Pythagerean tuning. When we transpose up by a fifth, we find
that the new scale includes two new notes: B is transposed to FY, as
befare, but the I also becomes a new note, an A of 3%/2°, differing by
a syntonic comma from the previous A of §. The reason for this is that
the interval G-A in the original scale of C was a ‘minot’ tone, but
became a ‘major’ tone after ransposition.

c B E F F ¢ A B o<
F R AR VAL AN FANE 4 S A
3%4 3%: 2

On fixed-pitch instruments, such as a harpsichord or orgas, this
sitwation made changes of key very difficulr. Amempts te overcome
the problem meant that alternative keys differing by a syntonic comma
had to be provided. One seventeenth-century mathematician who took,
this issue seriously was Marin Mersenne. In the 31-note keyboard he
described and discussed in his Harmonie universelle {1636-7), there were
no fewer than four keys between F and Gt

I

Eﬂ;« Coret

(e v e
Lo [l Fves Tl (e |\ 74
ifseon /z:nydo- /“n_ J
4o liggns TS 37330 ] 2oso
Ci D1 Eq HEis lWGw 1 R \77 % \7 Ciz
AN TR AT § [ O CRN A
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Twe of these (X14 and X15) are G flats differing by a syntonic
comma, one for each of the G paturals (again differing by a syntonic
comma), one (X16) is an F sharp {for ‘F13") and the fourth (X17) is a
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Newton's spectrum scale.
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syntonic comma higher than the ¥ sharp of X16. The following dia-
gram sumsnarizes the relationship of these keys:

e R L4

X7
Rabatd ]

-------- » % 1615 <
—A % BLED 41
-

/,Dgs ;ma
-~ - 5
- P
T} i D e B w00 FEZ

It is interesting to note that such keyboards were aceually buile: Flanded,
for example, played a 31-note organ in the Netherlands.

‘This multiplicity of keys s necessary because successive transposi-
tions of the scale of just intonation generate even more notes berween
those of the basic set ] than they did for the ser P In this case each trans-
position produces a new black’ note, as in the Pythagorean case, butan
extra new note is produced, a syntonic comma sharper for upward
transpositions and flatter for downward. This arises, as we have scen,
because one of the fifth intervals in the just scale is narrow-—the inter-
val DA has ratio 1§ or 32, which is less than 2. In musical terminology,
the old submediant is too flat to serve as the new supertonic,

The more transpositions take place, the worse the problems get. The
effect of successive upward and downward ranspositions of the basic
just scale ) is summarized overleaf,

In practice, modulations into remote keys were not usual at this time
(partly, no doubt, for this reason): however, even to use the keys near o
C in just intonation required two extra notes per modulation. The sys-
terns discussed so far imply infinitely many keys, with the spiral of fifihs
continking infiitely, both ourwards and inwazds: the Pythagerean sys-
tern P¥, with notes generated by octaves and perfecs fifths, and the just
system J*, with notes generated by octaves, perfect fifths and major
thirds, both yield infinite sets. So far as the construction of keyboard
instruments was concerned, this was not an encouraging state of
affairs.

Many attempts were made to develop tuning systems that overcame
the difficulties of Zarlino’s just system. Amongst these, Francesco
Salinas (1550-90) proposed a system called mean-tone, in which the two
whole tones of Zarlino's system (§ and ) were replaced by their geo-
metric mean, thus giving a whole tone interval of 5. The interval of
the third remsined & pure consonance of 2 while the fifth had a ratio of
445, which is approximately 1.4953: this is a lirtie less than 3, giving 2
rather fiat fifth, Isaac Newton also spent sruch time trying o select the
best ratios. Believing that seven notes in the octave and seven colours in

the spectrum were too much of a coincidence, he even produced 2
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¢ ¢ o P E F o® ¢ & a 4 o key sounding more in rane than any of the others, it was necessary 1o
¥ (5* 5} 51| . . I . divide the octa}ve so that each note was generated by some basic inter-
r 4 /Eﬁ P 4 4 7 F val: we call this a scale of equal temperament. Such ideas had been pro-

pounded long before this (in medieval China, for instance), More
recently, Galileo Galilel’s father Vincense Galilei had proposed in
Dialogo della musica antica ¢ moderna {1581} that the scale be constructed
£ from equsl semitones with a frequency ratic of . It is easy to check
: that ()12 is about 1.9855 ..., a Little less than 2, and thar £8Y is about
1.4915. .., a Jitrle less than }. Such a scheme would therefore give rather
flat octaves and flat fifths, hardly desirable features for the fundamental
interval of any scale.

From this proposal it is but a short step to that of Simon Stevin
{1548-1620), who suggested making the semitone imterval equal to
2% thereby preserving the octave's frequency ratio of 2. Since 2712 =
1.4983 ..., this choice of semitone still gives slightly flat fifths, but
better than those of Vincenso Galilei. 217 js an irrational number,
inexpressible as a fraction p/q and in addition, alk of its powers up to the
eleventh are also irrational. From a mathematical point of view this is
. ironical, given that we started out with a criterion for censonance
z » : : s oals 7hz |

essentially based on the notion of rationality. Of course, 27" is an
extracrdinarily good approximation te £, so geod that the difference is
virtually imperceptible: herein lies the justification for its use. In the fol-
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sy | 25 e @5 y prEe A lowing table t?‘u: ﬁ.'equmtj.y ratios for the major scale are compared in
Ja 4 4 4 4 2 4 4 4 A Pythagorean, just intonation and egual temperament:
s @22 z &) & & (Zs'/ﬂ @5) o : Eythagortan Just intonation equal temparament
34 5 33 35 36 34 36 3-i .
a 2°35) (255 | e 7 (LS Y © ! ! !
G 2/35 v e : i ; o ( T : o ¢ o 1125 1125 1322462,
e B 1.265625 125 Lzss9z1...
F 1,333333. ., 1.333333 ... 1.334839...
Just scales. diagram lnking the rwo; because he wished his scale to be symmaetrical, G L3 LS 1498307 ...
ke chose the note DD as his starting peing, obtaining the following scale: A 1.6875 1666666 ... 1681792
. B 1,8984375 1.875 1.887748...
note ? :’:‘. li Cj As B oD o 4 ) 2
frequency i H § H H : ¥ %
interval i ¥ ¥ 3 7 ¥ § Por ears accustorned to just intonation, the major third of almost 1.26

is noticeably sharp, and thus the extreme consonance of the just major

Other compromise tunings were also developed, which inco red
3 & F Jncorporate chord {6:5:4) is lost in equal temperament,

some pure consonances: these sounded reasonably satisfactory for keys

; . Under sransposition, we can analyzé the behaviour of the equal tem-
close to C, but in remoete keys they could sound at best unsatisfactory, P, ’ Y e 4
- . perament scale in the same way as we did with the Pythagorean and
and at worst excruciating, . : ) -
just scales. The equally tempered major scale has the foliowing notes:
Bqual temperament
- - . c D E F G A I
By the beginning of the eighteenth century, it was beginning to be
H T Py - 1 EZJFZ 2#!2 ?Sl!! 27!!2 29”2 2!!!!2 2
appreciated that for a keyboard to allow unlimited transposition, with no -
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Music and mathematics cHAPTER 1 ] Taning and remperament; closing the spiral

We can again apply the usual transpositions to this set; call it B, and ley
us trace what happens when we arrive at B and E,. In the following
table 211 is represented by c.

The adoption of equal temperament was a lengthy process. Already
in the iate Elizabethan period (late sixteenth century) there is evidence
that English virginal composers {notably John Bull) were moduiating 5o
far away from C that a form of equal temperament must have been in
use, but as recently as the mid-nineteenth century it was by no means
universal, especially in Britain: not one of the British organs at the Great
Exhibition of 1851 was equally tempered. However, it is cieas that dur-
ing the early eighteenth century the system was increasingly being
exploited. Fischer's Ariadne tusica (1702), for instance, is a set of minja-
tures that go through ninereen of the rwenty-four major or minor keys,
The most famous work to exploit all sweney-four keys is . 8. Bach’s Well-
tempered clavier (1722 and 1738-44), Whether “well-ternpered’ meant
equally tempered in the modern sense is disputed, but the work includes
a prelude and fugue for each major and minor key—hence the usual
appellation of "The 48 preludes and fugues’. Meanwhile a variety of
compromise systems co-existed, including for instance the 'Kirnberger
has been closed into a circle. Six upward and six downward transposi- Il systern’ which had four just tones, three mean tones, an equal-
tions now give the same set of notes, and we thus arrive at the familiar & tempered fifth, nine different semitones and only four major secondst
“circle of fifths™ The fact that 2'% is nearly 3%, and thar 37/ is more-ordess §, is at the
& roct of the equal temperament idea. The question naturally arises as to
whether the approximate equation 2f = 37 has any other integer solu-
tions, which might form the basis for an equally tempered scale that
gives even betrer approximations to the just frequency ratios. There are
infinitely many solutions, eack: correspending to a rational approxima-
tion pig of logy3. A good example is 2% == 3%, which leads 1o 2°1/% =
1.49994 ..., an excellent approximation to 1.5, This suggests that a
structure of §3 notes o the octave (rather than 12) might be bester for
terperament purposes. In the nineteenth: century R. Bosanguet aciu-
ally made a harmonium with such a subdivision of the cctave (see
Chapter 5), and the twentieth century saw further exploration of this

i possibility. Of course, the development of electronic note production in
- \ i the late twentieth century enabled completely accurate equally tem-
B pered systems with any number of notes, as we see in Chapter 9.

¢ & p e o o® o6 & oA N B o

The ‘new’ notes (o', &, o, of, &°, ") now sit symmetrically betwees
the “old’ notes, since they are their geometric means. Henee the tzans.
posed sets are identical, so that the keys of G and F? are the same. In this
way the Pythagorean comisa has now been ¢liminated, and the spiral

; ‘The idea of consonance is ultimately grounded in the notion of
Circle of fifths. : commensurability, an essential concepr in Greek mathematics, We -
: recognise consonance when we perceive & certain number of vibrations

We call the set of notes thus obtained E*: the new notes obtained are
thoss generated by 2t/%%, because every nore in E, EY or Eq is some
power of 2'/*. Moreover, any further wanspositions can generate no
new notes, 5o the set B is a finite ser. This is the great advantage of the
equal temperament system: there are only twelve notes, and these
allow unlimited transposition. The probiem of keyboard design is thus
solved, becanse each note now has infindtely many names: the key for
F! i also that for G, as it is also for A% and B*, By the removal of the
Pythagorean comma, the spiral has indeed collapsed onto a circle.

of one frequency exactly matching a certain number of another
frequency. The Greeks accorded incommensurables a very different
ontological status, and it thus remains a powerful ixony that irrational
numbers should come to the rescue—courtesy of the tolerance of the
huran ear and cultural conditioning—of the essentially rationally
based systemn that they originally described for constructing a musical
scate.
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