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Wil not the creative musician be a more powerful master if he is also informed in

regard 1o the pure science of the methods and materials of his art? Will ke rot be able
to mix tone colors with greater skill if he understands the nature of the ingredients and

the effects which they produce? (D. C. Mitler 1916)

Just as an image can be described as a mixture of colors {frequencies in

the visible part of the electromagnetic spectrum), 2 sound object can be
described as a blend of clerrentary acoustic vibrations. One way of dissect-
ing sound is to consider the contribution of various-components, each
corresponding to 2 certain rate of variation in air pressure. Gauging the
balance among these components is called spectrion analysis.

A working definition of spectrum is “a measure of the distribution of
signal energy as a function of frequency.” Such a definition may seem
straightforward, but no more general and precise definition of spectram
exists. This is because different analysis technicues measure properties that
they each calf “spectrum” with more-or-less diverging results. Except for
isolated test cases, the practice of spectrum analysis is not an exact science
(see Marple 1987 for a thorough discussion). The results are typically an
approximation of the actual spectrum, so spectrum analysis is perhaps more
precisely called spectrum estimation.

Spectrum analysis is evolving rapidly. The survey in this chapter, though
broad, cannot account for every possible approach. Given the technical
nature of the subject, our major concern in this chapter is to render some-
times abstrase concepts in terms of musical practice. Appendix A treats
Fourier analysis in more detaff and is a complement to this chapter.

Applications of Spectrim Analysis

Spectrum plots reveal the microstructure of vocal, instrumental, and syn-
thetic sounds (Moorer, Grey, and Snell 1977; Moorer, Grey, and Strawn
1978; Piszezalski 1979a, b; Dolson 1983, 1986; Stautner 1983; Strawn
1985a, b). Thus they are esseatial tools for the acoustician and psycho-
acoustician (Risset and Wessel 1982).

Musicologists are increasingly turning o sonograms and other sound
analysis techniques in order to stedy music performance and the structure
of electronic music (Cogan 1984). This extends to automatic trapscription
of music—from sound to score——either in common music notation or
graphic form (Moorer 1975; Piszezalski and Galler 1977; Chafe et al. 1982;
Foster et al. 1982; Haus 1983; Schloss 1985).

Real-time spectrum analysis is one type of “eatr” for interactive music
systems. Spectrum analysis reveals the characteristic frequency energy of
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instrumental and vocal tones, thus helping to identify timbres and separate
multiple sources playing at once (Maher 1990). As chapter 12 shows, the
results of spectrum anafysis are often valuable in pitch and rhythm
recognition,

But musicians want not only to analyze sounds; they want to medify the
analysis data and resynthesize variants of the original sounds. More and
more sound transformation techniques begin with an analysis stage, in-
cluding time compression and expansion, frequency-shifting, convolution
(filtering and reverberation effects), and many types of cross-synthesis—
hybrids between two sounds, Techniques based on spectrum analysis allow
continuous transformation between “natural” and “synthetic” tones in re-
synthesis of analfyzed tones (Gordon and Grey 1977; Risset 19852, b; Serra
1989}, For more on analysis/resynthesis see chapters 4 and 5.

Spectram Plots

Many strategies exist to measure and plot spectra. This section looks at
strategies falling into two basic categories: static (like a snapshot of a spec-
trum), and time-varying (iike a motion-picture film of a spectrum over time).

Static Spectrum Plots

Static plots capture a still image of sound. These sonic snapshots project a
two-dimensional image of ampiitude versus frequency. The analysis mea-
sures the average energy in each frequency tegion over the time period of
the analyzed segment. This time period or window can vary from a brief
instant to several seconds or longer. (Later we discuss the tradeoffs of vari-
ous window lengths.}

One type of static plot is a discrete or line spectrum, where a vertical line
represents each frequency component, For a mostly harmonic tone, the
clearest analysis is pitch-synchronous. This type of analysis measures the
amplitude of the harmonics of a tone whose pitch can be determined before-
hand. Figure 13.1a shows the line spectrum. of the steady state part of a
trumpet tone, measured using a pitch-synchronous technique. Notice that
at the instant this spectrum was measured, the third harmonic is higher in
amplitude than the fundamental.

Figure 13.1b shows another trumpet spectrum plotted on a logarithmic
(dB) amplitude scale. Such a scale compresses the plot into a narrower
vertical band. By tracing the outline of the peaks one can see the overall
formant shape.
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Figure 13.1  Static spectrum plots. (@) Line spectrum amplitude-versus-frequency
plot of the sustained portion of a trumpet tone. Each line represents the strength of
 harmonic of the fundamental frequency of 309 Hz. Linear amplitude scale. (b)
Spectrum of trumpet tone in (a) plotted on 2 logarithmic (¢B) scale, which com-
presses the plot into a narrower vertical band. {¢) Spectrum plot in a continuous
form, showing the outline of the formant peaks for a vocal sound “ah.”” Linear
amplitude scale. (Plots courtesy of A. Piccialli, Department of Physics, University
of Naples.)
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Figure 13,1 (cont.)

Figure 13.1c plots the spectrum of a vocal sound “ah™ in a continvous
form, where the discrete points measured by the analyzer have been filled in
by graphical interpolation. Individual sinusoidal components are hidden,
hut the overzll shape of the spectrum is clear.

Each type of static spectrum plot has its advantages, depending on the
signal being analyzed and the goal of the analysis.

Power Spectrum

From the amplitude spectrum one can derive the power spectrun, Physicists
define power as the square of the amplitude of a signal. Thus, power spec-
trum is the square of the amplitude spectrum. Displays of spectrum sorme-
times show power, rather than amplitude, because this correlates better
with human perception. Yet another measure is the power spectrum density
or PSD, which applies to continuous spectra like noise. A simple definition
of the PSD is that it is the power specirum within & specified bandwidth
(Tempelaars 1977}

Time-varying Spectrum Plots

Details in the spectrum of even a single instrument tone are constantly
changing, so static, timeless plots can represent only & portion of an
evolving sound form, A time-varying spectrum depicts the changing blend




540

Part 4 Sound Analysis

(a)

Amplitude

! 200 ms

7
i

Time

o]

0 5 KMz

Amplitude

Frequency —

Spectriam Analysis

of frequencies over the duration of an event. It can be plotted as a three-
dimensional graph of spectrum versus time (figure 13.2). These plots essen-
tially line up a series of static plots, one after the other.

Figure 13.3 shows two more display formats for time-varying spectrum
analysis. Figure 13.3a is a stili photograph from a warerfall display—a spec-
trupa plot in which the time axis is moving in real time. The term waterfall
display comes from the fact that this type of plot shows waves of rising and
falling frequency energy in 2 fuidlike depiction. Figure 13.3b depicts a vocal
melody.

Another way to display a time-varying spectrum is to plot a sorogram ot
spectrogram—a common tool in spesch analysis, where it was originally
called visible speech (Potter 1946). A sonogram shows the frequency versus
fime content of a signal, where frequency is plotted vertically, time is plotted
horizontally, and the amplitudes of the frequencies in the spectrum are
plotted in terms of the darkness of the trace. That is, intense frequency
components are plotted darkly, while soft frequency components are plot-
ted lightly (Rgure 13.4), We discuss the sonogram representation in more
detail later.

(©)

Amplitude

Fraguency ——+

?‘igur; 13.2 Time-varying spectra plotted on a linear amplitude scale. Time moves
rom front to back. (a) Sine wave at 1 KHz. (3) Flute playing ft i

1 ) g fluttertongue at pitch
E4. {¢) Triangle, hit once. ’ 7

Models Behind Spectrum Analysis Methods

There does not seem to be any general or optimal paradigm to either analyze or
synthesize any type of sound. One has to scrutinize the sound---quasi-periodic, sum of
inharmonic components, noisy, quickly or slowly evolving—and also investigate which
features of the sound are relevant to the ear. (Jean-Clavde Risset 1991)

No single method of spectrum estimation is ideal for all musical applica~
tions. Fourier analysis—the most prevalent approach—is actually a family
of different technmigues that are still evolving. A varety of non-Fourier
methods continue to be developed, as we show later.

Bvery sound analysis technique should be viewed as fitting the input data
to an assumed model. Methods based on Fourier analysis model the input
sound as a sam of harmonically related sinusoids—which it may or may not
be. Other techniques model the input signal as an excitation signal filtered
by resonances, as a summ of exponentially damped sinuscids or square waves, .
as a combination of inharmonically related sinusoids, as a set of formant
peaks with added noise, or as a set of equations that represent certain
hehavior of a traditional instrument. Innumerable other models are con-
ceivable. As we see in detail later, variations in performance among the
different methods can often be attributed to how well the assumed model
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(&)

Figare 13.3  Still images from real-time waterfall displays. (a) Synthetic trumpet
tone. Time comes from the back toward the front, with the most recent time at the
front. The frequency scale is logarithmic, going from left to right. The fundameatal
frequency is approximately ! KHz. Amplitude is plotted vertically on a logarithmic
dB scale. (§) Vocal melody. Time is coming toward the reader, with the most recent
time at the front. Low frequencies are at Jeft, (Images courtesy of A. Peevers, Center
for New Music and Art Technologies, University of California, Berkeley.)

Spectrum Arnalysis

KHz

Time

Figure 13.4  Sonogram plot of & struck tam-tam. The vertical axis is frequency, and
the horizontal axis is time. This sonogram uses 1024 points of input data, and a
Hamming window. The piot has a frequency resolution of 43 Hz and a time resolu-
tion of 1 ms. The analysis bandwidth of 0 to 22 KHz, and the measured dynamic
range is — 10 to —44.5 dB, plotted on 2 linear amplitude scale.

matches the process being analyzed. Hence it is important to choose the
appropriate analysis method for a particular musical application.

Spectrum and Timbre

The term “timbre” is a catchall for a range of phenomena. Like the vague
terms “sonority” and “Klangideal” (Apel 1972} it may some day be super-
seded by a moze precise vocabulary of sound quatities. The classification of
musica} timbre is an ancient science. Barly Chinese civilization developed
sophisticated written descriptions of timbre, including a taxonomy of in-
strumental sources (metal, stone, clay, skin, silk threads, wood, gourd, and
bamboo), and elaborate accounts of the different “touches” (attack forms,
pulls, and vibratos) involved in playing the silk strings of the classical chhin
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instrument (Needham, Ling, and Girdwood-Robinson 1962). Indeed, 4
main playing technique of the c/hin is the praduction of different timbreg
the same pitch.

Spectrum and timbre are related concepts, but they are not equivalent
Spectrum is a physical property that can be characterized as a distribution
of energy as a function of frequency. How to measure this energy precisely
is another question! Psychoacoustics uses the term “timbre” to denote per.
ceptual mechanisms that classify sound into families. By this definition, .
timbre is at least as concerned with perceptior as it is with sound signals, It
is certainly easiest to discuss timbre in the realm of traditional instrument
and veocal tones, where almost all past research has focused, Only a few
attempts have been made to classify the universe of sound outside this
category, the most heroic being the studies of Pierre Schaeffer (1977; see
also Schaeffer, Reibel, and Ferreyra 1967).

A common timbre groups tones played by an instrument at different
pitches, loudnesses, and durations. No matter what notes it plays, {or exam-
ple, we can always tell when a piano is playing. Human perception separates
each instrument’s tones from other instrument tones played with the same
pitch, loudness, and duration. Ne one has much trouble separating a ma-
rimba from a violin tone of the same pitch, loudness, and duration. Of
course a single instrument may also emit many timbres, as ip-ti€range of
sonorities obtained from saxophones blowed at different ingensities. !

Numerous factors inform timbre perception. These inclyde the amplitude
enveiope of a sound (especially the attack shape), undujations due to vi-
brato and tremolo, formant structures, perceived loudness, duration, and
the rime-varying spectral envelope (frequency content ovek time) (Schaeffer
1977; Risset 1991; McAdams and Bregman 1979; McAdams 1987; Gordon
and Grey 1977; Grey 1975, 1978; Barriére 1991, see also chapter 23).

In identifying the timbre of an instrumental source, the attack portion of
a tome is more important perceptually than the steady state (sustained)
portion {Luce 1963; Grey 1975). Traditional instrument families such as
reeds, brass, strings, and percussion each have characteristic attack “signa-
tures” that are extremely important in recognizing tones made by them.

Amplitude and duration have an influence on the perception of timbre.
For example, the proportions of the frequencies in the spectrum of a flute
tore at 60 ¢B may be the equivalent to those in a tone amplified to 120 dB,
but we hear the latter only as a loud blast. Similarly, a tonsburst that
lasts 30 ms may have the same periodic waveshape as a tone that lasts 30
seconds, but listeners may find it difficult to say whether they represent the
same source. -

Spectrum Analysis

The point is that spectrum is not the onfy chee to perceived timbre. By
examining the time-domain waveform carefully, ore can glean much about
the timbre of a sound without subjecting it to a detailed spectrum analysis
(Strawn 1985b).

- Spectram Analysis: Backgroand

In the eighteenth century, scientists and musicians were weil aware that
many musical sounds were characterized by harmonic vibrations around a
fundamental tone, but they had no technology for analyzing these harmon-
fes in a systematic way. Sir Isaac Newton coined the term “spectrum’” in
1781 to describe the bands of color showing the different frequencies pass-
ing through a glass prism.

In 1822 the French engineer Jean-Baptiste Joseph, Baron de Fourier
(1768-1830) published his landmark thesis dnalytical Theory of Heat. In
this treatise he developed the theory that complicated vibrations could be
analyzed as a sum of many simultaneous simple signals. In particular,
Fourjer proved that any perjodic function could be represented as an in-
finite summation of sine and cosine terms. Due to the integer ratio relation-
ship between the sinusoidal frequencies in Fourer analysis, this became
known as harmonic analysis. (For a brief history of Fourier analysis, see
appendix A.) In 1843, Georg Ohm (1789-1854) of the Polytechnic Institute
of Niirnberg was the first to apply Fourier’s theory to acoustical signals
(Miller 1935). Later, the German scientist H, L. F. Helmholtz (1821-1894)
surmised that instrumental timbre is largely determined by the harmonic
Fourier series of the steady state portion of insirumentat tones (Helmholtz
1863). Helmholtz developed a method of harmonic analysis based on me-
chanical-acoustic resonators.

Translating Helmholtz's term Klangfarbe (“sound color”), the British
physicist John Tyndall coined the term clang-tint to describe timbre as “an
admixture of two or more tones” and carried out maginative experirnents
in order to visuajize sound signals, such as “singing flames™ and “singing
water jets” (Tyndall 1875).

Mechanical Spectrmn Analysis

Manuaily operated mechanical waveform analyzers were developed in the
late nineteenth and early twentieth centuries (Miller 1916; see also appendix
A). Backhaus (1932) developed an analysis system for a single harmonic at
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a time. This consisted of a carbon microphone connected to the input of
tunable bandpass filter. The output of the filter was routed to an amplj
whose output was in turn connected to a pen and drum recorder. Backhg
tuned the filter to the frequency of the harmonic of interest and commang
an instrumentalist to play a note. As the musician played, Backhayg
crainked a drum while a pen traced the output of the filter for that frequenq?
on a roll of paper. The resulting trace was taken to represent the behavior
of a single harmonic. Meyer and Buchmann (1931} developed a similay
system. :

Advances in the design of oscilloscopes in the 1940s generated a wave
of new research, Scientists photographed waveforms from the oscitioscope
screen and then manually traced their outline into mechanical Fourier
analyzers.

A theoretica] leap forward was described in Norbert Wiener’s classic

paper on generalized harmonic analysis (Wiener 1930), which shifted the -

emphasis of Fourier analysis from harmonic components to a continuous
spectrim, Among other results, Wiener showed, by analogy to white light,
that white noise was composed of all frequencies in equal amounts.
Blackman and Tukey (1958} described a practical implementation of Wie-
net’s approach using sampled data. After the advent of computers in the
early 1950s, the Biackman-Tukey approach was the most popular spectrum
analysis method until the introduction of the fust Fourier transform (FFT)
in 1965, sometimes credited to Cooley and Tukey (1965). (See Singleton
1967, Rabiner and Gold 1975, and appendix A for more on the history of
the FFT.)

Most precomputer analyses, such as those of Miller (1916) and Hail
(1937} averaged out the time-varying characteristics of instrumental tone.
As in the research of Helmholtz, these studies presumed that the steady
state spectrum (sustained or “held” part of a note) played a dominant role
in timbre perception. As mentioned earlier, it is now recognized that the first
half-second of the attack portion of a tone is more important perceptually
than the steady state portion to the identification of an instrumental note.

Dennis Gabor’s pioneering contributions to sound analysis (1946, 1947)
had a delayed impact, but are now viewed as seminal, particularly because
he presented a method for analysis of time-varying signals. In Gabor’s
theories, sound can be analyzed simuitaneously in the time and frequency
domain into units he called quanta-—now called grains, wavelets, or
windows, depending on the analysis system being used. See chapter 5 for
more on grains. Wavelet analysis and windows are discussed later in this
chapter.

Spectrum Analysis

Figure 13.5  James Beauchamp performing sound analysis experiments at the Uni-
versity of Iilinois, ca. 1966. ’

Computeyr-hased Spectrum Analysis

Early expetiments in computer analysis of musical instrument tones re-
quired heroic efforts. Analog-to-digital converters werce rare, computers
were scarce, theory was immature, and analysis programs had to be cobbled
from scratch on punched paper cards (figure 13.5). Against these obstacles,
computer-based analysis and synthesis developed in the 1960s yielded more
detailed results than did analog models. At Bell Telephone Laboratories,
Max Mathews and Jean-Claude Risset analyzed brass-instruments using a
pitch-synchronous analysis program (Mathews, Miller, and David 1961;
Risset 1966; Rissct and Mathews 1969). Pitch-synchronous analysis breaks
the input waveform into pseudoperiodic segments. It estimates the pitch of
each pseudoperiodic segment. The size of the analysis segment is adjusted
relative to the estimated pitch period. The harmonic Fourjer spectrum is
then calculated on the analysis segment as though the sound were periedic;
as though the pitch is quasi-constant throughout the analysis segment. This
program generated time-varying amplitude functions for each harmonic of
a given fundamental. Luce’s {1963) doctoral rescarch at the Massachusetts
Institute of Technology implemented another pitch-synchronous approach
to analysis/resynthesis of instrumental tones.
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Several years later, Peter Zinovieff and his colleagues at EMS, Long
developed a hybrid (analog-digital) real-time Fourier analyzer{resynthes;
for musical sound (Grogorno 1984),

Heterodyne Filter Analysis

The next step in computer analysis of musical tones involved heterodyng
Silters (Freedman 1965, 1967; Beauchamp 1969, 1975, Moorer 1973, E975}'
The heterodyne filter approach is good for resolving harmonics (or quasi
harmonics) of a given fundamental frequency. This implies that the funda.

mental frequency is estimated in a prior stage of analysis. The heterodyne -
filter multiplies an input waveform by a sine and a cosine wave at harmonic
frequencies and then sums the results over a short time period to obtain |

ampiitude and phase data.

Figure [3.6a shows the operation of the heterodyne method, The input -

signal is multiplied by an analysis sine wave. In figure 13.6a, the frequency
of the two signals exactly match, so the energy is completely positive, in-
dicating strong energy at the analysis frequency. In 13.6b the two frequen-
cies are not the same, so we obtain a waveform that is basically symmetrical

{a)
1.0

JAAAA

Time =

Time ——e

Figure 13.6 Heterodyne filter analysis. (a) Product of an input signal (a 100 Hz
sine wave) with an analysis signal (a 100 Hz sine wave). The result is entirely posi-
tive, indicating strong energy at 100 Hz. (5) Product of an input signal {2 200 Hz
sine wave) with an analysis signal (2 100 Hz sine wave). The result is scattered

positive and negative energy, indicating no strong energy at 100 Hz in the input
signal.

Spectrum Analysis

about the amplitude axis. When the heterodyne filter sums this waveform
over a short time period it basically cancels itself out.

After a period of experimentation in the 1970s, the limits of the hetero-
dyne method became well known. Moorer showed that the heterodyne Biter
approach is confused by fast attack times (less than 50 ms) and pitch
changes {e.g., glissando, portamento, vibrato) greater than 2 percent (about
a quatter tone). Although Beauchamp (1981) implemented a fracking ver-
sion of the heterodyne filter that could follow changing frequency trajec-
tories (similar in spirit to the tracking phase vocoder discussed later), the
heterodyne appreach has been supplanted by other methods.

The Saga of the Phase Vocoder

One of the most popular techniques for analysis/resynthesis of spectra is the
phase vocoder (PV). Fianagan and Golden of Bell Telephone Laboratories
developed the first PV program in 1966. It was originally intended to be 2
coding method for reducing the bandwidth of speech signals. Far from
compressing andio data, however, the PV causes a data explosion! That is,
the raw analysis data are piuch greater than the original signal data.

The PV is computationally intensive. Early implementations required so
much computing time that the PV was not applied in practical applications
for many years. Working at the Massachusetts Institute of Technology,
Portnoff (1976, 1978) developed a relatively efficient PV, proving that it
could be implemented using the FFT. He experimented with sound trans-
formations of speech such as time compression and expansion. This led to
Moorer’s landmark paper on the application of the PV in computer music
(Moorer 1978).

Duzing the 1970s and 1980s, computer-based spectrum analysis yielded
significant insights into the microstructure of instrumental and vocal tones
(Moorer, Grey, and Snell 1977; Moorer, Grey, and Strawn 1978; Piszczalski
1979a, b; Dolson 1983; Stautner 1983; Strawn 1985b). In the 1990s spec-
trum analysis has evolved from an esoteric technical specialty to a familiar
tool in the musician’s studio—-for analysis, transcription, and sound trans-
formation. The next sections discuss various forms of spectrum analysis,
including the short-time Fourter transform and the phase vocoder. Then we
present extensions of Fourier analysis, including constant 2 filter banks and
the wavelet transform. Although Fourier methods dominate spectrum ana-
lysis, other methods have gained ground in recent years. So we also survey
these “non-Fourier techniques” later in this chapter. (For a technical over-
view of spectrum analysis written ir an anecdotal style, see Robinson 1982.)
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The Short-time Fourier Spectram

The 'Fourier transform (FT) Is & mathematical procedure that maps

c'ontmuousfime (analog} waveform to a corresponding infinite Fourieran
ries summation of elementary sinusoidal waves, each at a specific arnplitus:ie
and pl?ase. Ir other words, the FT converts its input signals into a corre.
sponding spectrum representation. To adapt Fourier anaiysis to the pra o
cal world of sampled, finite-duration, time-varying signals researchcnb
molded the FT into the short-time Fourter transform or STF”’f (Schroegz

and Atal 1962: Flanagan 1972; Allen and Rabi
’ g abiner 1977, o
Rabiner 1973b). er 1977, Schafer and

Windowing the Input Signal

A‘s a p.reparatéon for spectrum analysis, the STFT imposcs a sequence of l
t{me W{ndows upon the input signal (figure 13.7). That is, it breaks the input
s1gna¥ into “short-time” (i.e., brief) sepments bounded in time by a window
ffmctlen. A window is nothing more than a specific type of envelope de-
signed for spectrum analysis. The duration of the window js wsually in the
range of 1 ms to I second, and the segments sometimes overfap. By analyz-

tnput signat

Extract segment

Muitiply by

[ wirschow

- funiction
Window
furiction

Windowed segment

Figure 13,7 Windowing an input signal.

Spectrum Analysis

ing the spectrum of each windowed segment separately, one obtains a se-
quence of measurements that constitute a time-varying spectrum.

The windowing process is the source of the adjective “short-time™ in
“short-time Fourier transform.” Unfortunately, windowing has the side
effect of distorting the spectrum measurement. This is because the spectram
analyzer is measuring not purely the input signal, but rather, the product of
the input signal and the window. The spectrum that results is the convolu-
tion of the spectra of the input and the window signals. We see the implica-
tions of this later. (Chapter 10 explains convolution. Appendix A discusses
windowing in more detail.)

Operation of the STFT

After windowing, the STFT applies the discrete Fourier transform (DFT) to
each windowed segment. Here all we need say about the DFT is thatitis a
type of Fourier transform algorithm that can handle discrete-time or sam-
pled signals. Its output is a discrete-frequency spectrum, that is, a measure
of energy at a set of specific equally spaced frequencies. (See appendix A for
an introduction to the DFT.)

“The fast Fourler transform or FFT, mentioned earlier in the historical
section, is simply an efficient implementation of the DFT. Thus most practi-
cal implementations of the STFT apply the FFT algorithm to each win-
dowed segment. Figure 13.35 diagrams the STFT.

Sampled
input signal

Windowed
segment

Maghitude Phase
spectrum  spectrum

Tigure 13.8  Overview of the short-time Fourier transform (STFT).
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Figure 13.9 STFT signals. (4) Input waveform. (6) Windowed segment. (¢} Magni-
tude spectrum plotted over the range 0 to —80 dB. (d) Phase spectrum plotted over
the range —= to n. (After Serra 1989.) '

Bach block of data generated by the FFT is called a frame, by analogy to
the successive frames of a film. Each frame contains two things: (1) a magni-
tude spectrum that depicts the amplitude of every analyzed frequency com-
ponent, and (2} a phase spectrum that shows the initial phase value for
every frequency component. All of the plots in figures 13.1~13.4 are magni-
tude spectrum plots.

We couid visualze each of these two speotra as histograms with a vertical
line for each frequency component along the abeissa. The vertical line repre-
sents amplitude in the case of the magnitude spectrum, and starting phase
(between ~x and 7} in the case of the phase spectrum (figure 13.9). The
magnitude spectrum is relatively easy t¢ read. When the phase spectrum is
“normalized” to the range of —=n and = it is called the wrapped phase
representation. For many signals, it appears to the cye like a random func-
tion. An unwrapped phase projection may be more meaningful visually.
Appendix A explains the concepts of wrapped and unwrapped phase.

Spectrum Analysis

To summarize, the application of the STFT to a stream of input samples
results in a series of frames that make up a time-varying spectrum.

Overlap-add Resynthesis from Analysis Data

To resynthesize the original time-domain signai, the STFT can reconstruct
each windowed waveform segment from its spectrum components by ap-
plying the inverse discrete Fourier transform (IDFT) to each frame. The
IDFT takes each magnitude and phase component and generates a cor-
responding time-demain signal with the same envelope as the analysis
window.

Then by overlapping and adding these resynthesized windows, typically
at their —3 dB points (see chapter 5 for an explanation of this term), one
obtains a signal that is a close approximation of the original. Figure 13.10¢
depicts the overlap-add process in schematic form. {Appendix A explains
both the IDFT and overlap-add resynthesis in more detail.)

We usc the qualification “close approximation™ as a way of comparing
practical implementations of the STFT with mathematical theory. In the-
ory, resynihesis from the STFT is an identity operation, replicating the
input sample by sample (Portnofl 1976). If it were an identity operation in
practice, we could copy signals through an STFT 2ny number of times with
no peneration loss. However, even good impiementations of the STFT lose
a small amount of information. This loss may not be audible after one pass
through the STFT.

Limits of Overlap-add Resynthesis

Resynthesis with the plain overlap-add (OA) method is of limited use from
the standpoint of musical transformation. This is because the OA process is
designed for the case where the windows sum perfectly to a constant. As
Allen and Rabiner (1977) showed, any additive or multiplicative transfor-
mations that disturb the perfect summation criterion at the final stage of the
OA cause side effects that will probably be audible. Time expansion by
stretching the distance between windows, for example, may introduce comb
filter or reverberation effects, depending on the number of frequency chan-
nels or bins used in the analysis. Using speech or singing as a source, many
transformations result in robotic, ringing voices of limited use.

One way 1o lessen these unwanted artifacts is to stipulate a great deal of
overlap among successive windows in the analysis stage, as explained in the
next section. The method of “improved overlap-add” resynthesis is another
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Overlapping spectrum frames

Resynihesized signat

Figure 13.10  Overlap-add resynthesis. The gray arcas indicate overlapping spec.
trum frames, Note: for visual clarity, we show only five franzes. In practice it is
typical to use more than 100 frames per second of analyzed sound.

strategy for overcoming these problems (George and Smith 1992; see also
the description later in this chapter).

Why Overlapping Windows?

‘The motivation behind the overlapping analysis windows in the STFT can
be confusing. After zll, theory says that we can analyze a segment of any
fength and exactly resynthesize the segment from the analysis data. Evi-
dently we can analyze in one pass Stravinsky's Le sacre du printemps using a
30-minute-long window, and reconstruct the entire picce from this analysis.
This being the case, why bother to break the analysis into small, over-
lapping segments?

The reasons are several, The analysis of a monaural sound sampled at
44.1 KHz and lasting 30 minutes would result in a spectrum of over 79
miffion points. A visual inspection of this enormous spectrum would even-
tually tell us all the frequencies that occurred over a 30-minute duration, but
would not tell us when precisely they occurred; this temporal information is
embedded deep in the mathematical combination of the magnitude and
phase spectra, hidden to the eye. Thus the first thing that windowing helps
with is the visualization of the spectrum. By limiting the analysis to short
segments (less than a tenth of a second, typically), each analysis plots fewer
peints, and we know more accurately when these frequencies occurred.

A second reason for using short-time envelopes is to conserve memory.
Consider an analysis of 2 30-minute chunk of sound swaliowed in one gulp.
Assuming 16-bit samples, one would need a computer with at least 79 mil-
Yion 16-bit words of random-access memory (RAM) just to hold the input
while the computer caiculates the FFT. By breaking the input into bite-sized
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segments it becomes easy to calculate the FFT on each small segment at a
time.

A third reason for short-time windows is that one obtains results quicker.
For Le sacre du printernps one would have to wait up to 30 minutes just to
read in the input signal, plus however long it takes to calcutate an FFT on
a 79 million point inp.t signal. Windowing the input Jets one obtain initial
results after a few milliseconds of the input has been read in, opening up
applications for real-time spectrum analysis.

These three reasons explain the segmentation, but why overlap the win-
dows? As explained earlier, smooth bell-shaped windows minimize the dis-
tortion that ocours in windowing. And of course, bell-shaped windows must
overlap somewhat in order to capture the signal without gaps. But even
greater overlap is often desirable, more than is dictated by the perfect sum-
mation criterion. Why is this? Increasing the overlap factor is equivalent to
oversampling the spectrum, and this protects against the aliasing artifacts
that can occur in transformations such as time-stretching and cross-synthe-
sis. An overlap factor of eight or mere is recommended when the goal is
transforming the input signal.

Later we discuss basic criteria for selecting a window and setting its
length. Appendix A goes into the subject of windowing in more detail, Next
we present an alternative to the overlap-add resynthesis model.

Oscillator Bank Resynthesis

Sinusoidal additive resynthesis (SAR) (or oscillator bank resynthesisy differs
from the overlap-add approach. Rather than summing the sine waves at
each frame——as in the OA resynthesis model-—SAR applies 2 bank of oscil-
lators driven by amplitude and frequency envelopes that span across frame
boundaries (figure 13.11). This imphes that the analysis data must be con-
verted beforehand into such envelopes. Fortunately, the conversion from
analysis data (magnitude and phase) to synthesis data {amplitude and fre-
quency) takes little calculation time.

The advantage of the SAR model is that envelopes are much more robust
under musical transformation than the raw spectrum frames, Within broad
limits, one can stretch, shrink, rescale, or shift the ervelopes without
worrying about artifacts in the resynthesis process; the perfect summation
criterion of the OA model can be ignored. A disadvantage of SAR is that
it is not as efficient computationally as QA methaods.

A. tracking phase vocoder can be seen as a SAR method since it also
constructs frequency envelopes for additive sine wave synthesis. We discuss
this approach in more detail in the section on the phase vocoder later.
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Figure 13.11  QOscillator bank resynthesis. The analysis data have been converteq
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se), and so we care about only half of the analysis bins. (As mentioned
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eatlier, & bin is a frequency channel in the parlance of signal processing.)
The effective frequency resolution of an STFT is thus N/2 bins spread
equally across the audio bandwidtk, starting at 0 Hz and ending at the
Nyguist frequency. In our example, the number of usable audio frequency
bins is, 500, spaced 50 Hz apart.

Time/Frequency Uncertainty

All windowed spectrum analyses are hampered by a fundamental wrcer-
tainty principle between time and {requency resolution, first recognized by
quantum physicists such as Werner Heisenberg in the early part of the
twentieth century (Robinson 1982). This principle means that if we want
high resolution in the time domain (i.e., we want to know precisely when an
event occurs), we sacrifice frequency resolution. In other words, we car tell
that an event occurred at a precise time but we cannot say exactly what
frequencies it contained. Conversely, if we want high resolution in the fre-
guency domain (i.e., we want to know the precise frequency of a com-
ponent), we sacrifice time resotution. That is, we can pinpoint frequency
content only over a long time interval. It is important o grasp this relation-
ship in order to interpret the results of Fourier analysis.

Periodicity Implies Infinitude

Fourier analysis starts from the abstract premise that if a signal contains
only one frequency, then that signal must be a sinusoid that is infinite in
duration. Purity of frequency—absolute periodicity—implies infinitude. As
soon as one limits the duration of this sine wave, the only way that Fourier
analysis can account for this is to consider the signal as a sum of many
infinite-length sinusoids that just happen to cancel each other out in such a
way as to resultina lipnited-duration sine wave! While this characterization
of frequency neatens the mathematics, it does not jibe with our most basic
experiences with sound. As Gabor (1946) pointed out, if the concept of
frequency is used only to refer to infinitely long signals, then the concept of
changing frequency is impossiblet

Stitl, we can understand one aspect of the abstract Fourier representation
by a thought experiment. Using a sound editor, imagine that we zoom into
the limit of the time domain of a digital system. In the shortest “instant’ of
time we sec an individual sample point (the shaded rectangle marked O in
figure 13.122). We know exactly when this sample ocours, so we have high
temporal resolution. But we cannot see what waveform it may be a part of;
it could be a2 part of a wave at any frequency within the Nyquist range
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Figure 13,12 Frequency uncertainty at a smali timescale. (@) The shaded box O
represents & zoom into a precise sample period in a system with good time resolu-
tion {a 10 usec sample period implies a sampling rate of 166 KHz). No frequency
information is revealed at this time resolution; we fose any sense of what larger
waveform this might be a part of. Thus a frequency estimiation from one or a few
samples is bound to be only a rough guess. (6) Zooming out to a timescale of
140 psec gives a.much better picture of the overall waveform and the local fre-
quency period.
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of the system. As we zoom out (figure 13.12b), we have more samples to
analyze, and so the more sure we can be about what possible frequencies
they might represent. But since Fourler analysis calculates the spectrum for
the entire analyzed segment at a time, spectrum displays of long scgments
leave uncertainty as to when a particular frequency occurred. Once again,
frequency precision comes at the expense of temporal imprecision.

Filter design provides more clues. Recall from chapter 10 that the number
of delay stages influences the sharpness of a filter. In order to isolate a very
narrow band, such as a single frequency component, we need extremely
sharp edges in the filter response. This implies that one needs to look back
into the distant past of the signal in order to extract a pure frequency.
Another way of saying this is that such a filter has a long impuise response.
(See chapter 10 for an explanation of impulse response.)

Time|Frequency Tradeoffs

The FFT divides up the audible frequency space into N/2 frequency bins,
where N is the jength in samples of the analysis window. Hence there is a
tradeoff between the number of frequency bins ard the length of the analy-
sis window (figure 13.13). For example, if N is 512 sampies, then the number
of frequencies that can be analyzed is limited to 256. Assuming 2 sampling
rate of 44.1 KHz, we obtain 256 bins equally spaced over the bandwidth
0 Hz to the Nyqguist frequency 22.05 KHz. Increasing the sampiing rate
only widens the measurable bandwidth. It does not increase the frequency
resolution of the analysis,

Table 13.1 demonstrates the balance between time and frequency resolu-
tion. If we want high time accuracy (say 1 ms or about 44 samples at a
44.1 KHz sampling rate), we must be satisfied with only 44/2 or 22 fre-
quency bins. Dividing up the audio bandwidth from 0 to 22.05 KHz
by 22 frequency bins, we obtain 22,050/22 or about 1000 Hz of frequency
resolution. That is, if we want to know exactly when events occur on the
scale of { ms, then our frequency resolution is limited to the gross scale of
1000-Hz-wide frequency bands. By sacrificing more time resolution, and
widening the analysis interval to 30 ms, one can spot frequencies within a
33 Hz bandwidth. For high resolution in frequency (1 Hz), one must
stretch the time interval to 1 second (44,160 samples)!

Because of this limitation in windowed STFT analysis, researchers are
examining hybrids of time-domain and frequency domain analysis, multire-
solution analysis, or non-Fourier methods to try to resobve both dimensions
at high resolution. Later sections discuss these approaches.
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F{igure 13.13  Relationskip of window size to the number of frequency analysis
bz‘ns. (a). A narrow window of four samples can resolve only two frequencies. (b} a
wider window of sixteen: samples divides the spectrum into cight bins.

Table 13.1  Time versus fregnency resolution in windowed spectrum analysis

L@gth ot‘~ time Frequency resolution
window {in ms) (analysis bandwidth) (in Hz)
1 1000
P 500
3 330
19 100
20 50
30 33
100 0
200 5
300 3
1000 (1 sec) i
2000 0.5 ¥
3000 0.3 ‘
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Frequencies in between Analysis Bins

The STFT knows only about a discrete set of frequencies spaced at equal
intervals across the audio bandwidth. The spacing of these frequencies de-
pends on the length of the analysis window. This length is effectively the
“fundamental period” of the analysis. Such a model works well for sounds
that are harmonic or quasi-harmonic where the harmonics align closely
with the bins of the analysis. But what happens to frequencies that fall in
between the squally spaced analysis bins of the STFT? This is the case
for inharmonic sounds such as gongs or noisy sounds such as snare drums.

Let us call the frequency to analyzed f. When f coincides with the center
of an analysis channel, all its energy is concentrated in that channel, and so
it is accurately measured, When f is close to but not precisely coincident
with the center, energy is scattered into all other analysis channels, but with
a concentration remaining close to £ Figure 13.14 shows three snapshots of
a frequency sweeping from 2 to 3 Hz, which can be generalized to other
frequency ranges. The leakage spilling into alt frequency bins from compo-
nents in between bins is a well-known source of unreliability in the spectrum
estimates produced by the STFT. When more than one component is in
between bins, beating effects (periodic cancellation and reinforcement) may
occur in both the frequency and ampiitude traces. The result is that the
analysis shows fluctuating energy in frequency components that are not
physically present in the input signal,

Significance of Clutter

If the signal is resynthesized directly from the analysis data, the extra fre-
quency components and beating effects pose no prableny; they are benign
artifacts of the STFT analysis that. are resolved in resynthesis. Beating
effects are merely the way that the STFT represents in the frequency domain
2 time-varying spectrum. In the resynthesis, some components add con-
structively and some add destructively (canceling each other out), so that
the resynthesized result is a close approximation of the original. (Again, in
theory it is an identity, but small errors creep into practical applications.)
Beating and other anomalfes are harmiess when the signalt is directly
resynthesized, but they obscure attempts to inspect the spectrum visuaily, or
transform it. For this reason, the artifacts of analysis are called clutter.
Dolson (1983) and Strawn (1985a) assay the significance of clutter in analy-
sis of musical instrument tones. Gerzon {1991) presents a theory of “super-
resolving”™ spectrum analyzers that offer to improve resohution in both time
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Figare 13.14 . Three STFT “srapshots” of a sound changing frequency from 2
to 3 Hz. The STFT in this case has analysis bins spaced at 1 Hz intervals. When the
input frequency is 2.5 He, it falls in between the equally spaced frequency bins of the
analyzer, and the energy is spread across the entire spectrum. (After Hutchins 1984.)

and frequency, at the expense of increased clutter, which, Gerzon argues,
has some perceptual significance.

Alternative Resynthesis Techniques

Two alternatives to the standard techniques of resynthesis merit a brief
word here. The first is an adaptive method that offers improved resolution
and more robust transformations; the second offers greatly increased resyn-
thesis speed.

Analysis-by-synthesisjoverlap-add (ABS/OLA) refines the STFT with
overlap-add resynthesis by incorporating an error analysis procedure
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(George and Smith 1992). This procedure compares the original signal with
the resynthesized signal. When the error is above a given threshold, the
procedure adjusts the amplitudes, frequencies, and phases in the analysis
frame to approximate the original more closely, This adaptive process may
occur repeatedly until the signal is more-or-less precisely reconstructed. As
a result the ABS/OLA method can handle attack transients, inharmonic
spectra, and effects such as vibrato with greater accuracy than the plain
overlap-add method. It also permits more robust musical transformations.
As we will see later, 4 method called the tracking phase vocoder has similar
benefits.

The “FFT™ method is a special hybrid of overlap-add and oscillator
bank resynthesis optimized for real-time operation. The method is so
named because the resynthesis is carried out by the inverse FFT, which is
sometimes abbreviated FFT ™, It starts from previously calculated oscilla-
tor bank resynthesis data. It then converts these data by an efficient algo-
rithm into an overlap-add model with data reduction and optimization
steps that greatly speed up resynihesis. See Rodet and Depalle (1992) and
French patent 900935 for details.

The Sonogram Representation

A sonogram, sonograph, or spectrogram is a well-known spectrum display
technique in speech research, having been used for decades to analyze utter-
ances. A sonogram shows an overview of the spectram of several seconds of
sound, This enables the viewer to see general features such as the onset
of notes or phonemes, formant peaks, and major transitions. A trained
viewer can read a speech sonogram. See Cogan (1984) for an example of
using sonograms in the analysis of music. The sonogram representation has
also been employed as an interface for spectrum editing (Eckel 1990, see
chapter 16}.

The original sonogram was Backhaus's (1932) system, described earlier in
the background section on spectrum analysis; see also Koenig et al. (1946).
In the 1950s the Kay Sonograph was a standard device for making sono-
grams, It consisted of a number of narrow bandpass analog filters and
a recording system that printed dark bars on a roll of paper. The bars grew -
thicker in proportion to the energy output from each filter. Today sone-
grams are generally implemented with the STFT.

Figure 3.4 showed a sonogram, representing a sound signal as a two-
dimensional display of time versus “frequency + amyglitude™. The vertical
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dimension depicts frequency (higher frequencies are higher up in the g
gram) and shades of gray indicate the amplitude, with dark shades indicating_
greater intensity.

Sonogram Parameters

The parameters of the modern sonogram are the same as those of the STFT,
except for certain display parameters. Adjustments to these parameterg
make a great difference in the output image:

1. Range of amplitudes and the type of scale used, whether linear or
logarithmic.

2. Range of frequencies and the type of scale used, whether linear or loga-
rithmic.

3. Time advance of the analysis window, also called hop size (in samples) or
window overlap factor. This determines the time distance between succes-
sive columns in the output dispiay. (We discuss this parameter in more
detail in the section on the phase vocoder.)

4, Number of samples to analyze and the size of the FFT analysis window;
the resolution of time and frequency depend on these parameters.

5. Number of frequency channels to display, which determines the number
of rows in the graphical output and is related to the range and scale of
the frequency domain; this canpnot exceed the resolution imposed by
the window size.

6. Window type-—see the discussion in the section on the phase vocoder
and in appendix A.

Parameter 4 includes two parameters; the FFT window size is usually
greater than the actuai number of sound samples analyzed, the difference
being padded with zero-valued samples. {See the section on phase vocoder
analysis parameters.) These parameters have the most dramatic effect on the
display. A short window results in a vertically oriented display, indicating

Figure 13.15 Time-versus-frequency iradeoffs in sonogram analysis and display.
All dispiays show speech sound sampled at 44.1 KHz. {a} Analysis window is 32
sampies long, time resolution is 0.725 ms, and frequency resokution is 1378 Hz. (&)
Analysis window is 1024 samples fong, time resolution is 23.22 ms, frequency reso-
iution s 43.07 Hz. (¢} Analysis window is 8192 samples long, time resolution is
185.8 ms, frequency resolution is 5.383 Hz, (Sonograms provided by Gerhard Bekel
using his SpecDraw program.)

Spectrum Analysis
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the precise onset time of events but blurring the frequency reading (figure
13.15a). A medium length window resolves both time and frequency fea-
tures fairly well, indicating the presence of formant frequencies {fgure
13.15b). A long window generates a horizontally oriented display, as indi.
vidual frequency bands come into clear view, but their position in time is
smeared along the horizontal axis (figure 13.15¢).

The speech sonogram has to be modified to handle the more stringent
demands of music. Musical sonograms tend to be longer than speech sono-
grams, including sections or entire pieces. The dynamic range of music is
much wider than speech. Also, as Lundén and Ungvary (1991) point out
speech sonograms are oriented toward an accurate physical representation’
of the spectrum, whercas musicians are more interested in a perceptual view
that is in accord with what we can hear. The cochleagram display, explained
later, may be a more accurate perceptual picture, For a critical analysis
of traditional sonograms from the standpoint of accuracy, see Loughlin,
Atlas, and Pitton (1992).

The Phase Vocoder

The phase vocoder has emerged as an increasingly popular sound analysis
tool, being packaged in several widely distributed software packages.
{Gordon and Strawn 1983 and Moore 1990 contain annotated code for
practical phase vocoders.) One can view the PV as passing a windowed
input signal through a bank of parallel bandpass filters spread out at equal
intervals across the audio bandwidth, These filters measure the amplitade
and phase of a sinusoidal signal in each frequency band. Through a subse-
f{ucnt operation (explained in appendix A), these values can be converted
into two envelopes: one for the amplitude of the sine, and one for the
frequency of the sire. This corresponds to the case of oscillator bank resyn-
thesis previously discussed. Various implementations of the PV offer tools
for modifying these envelopes, aliowing musical transformations of ana-
jyzed sounds.

In theory, analysis and resynthesis via the phase vocoder is & sample-by
tsample clone (Portnoff 1976). In practice, there is usually a slight loss of
information, which may not be audible in one analysis/resynthesis pass. In
any case, a musician’s use of the PV inevitably involves modification of
the analysis data before resynthesis. For what the composer seeks in the
output is not a clone of the input, but a musical transformation that main-
tains a sense of the identity of the source. That is, if the input signat is a
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spoken voice, one usually wants it to sound ke a spoken voice even after
being transformed, One can also wse the PV for radical distortions that
destroy the identity of the input signal, but more efficient distortion algo-
rithms are easily found, such as the modulations discussed in chapter 6.

See chapter 5 for a description of the first vocoder. For more on the PV,
including descriptions of practical implementations, see Portroff 1976,
1978, 1980; Holtzman 1978; Moorer 1978; Moore 1990; Dolson 1983, 1986,
Gordon and Strawn 1985; Strawn 1985b; Strawn 1987; Serra 1989; Depalle
and Poirot 1991; Frbe 1992; Walker and Fitz 1992; Beauchamp 1993.

Phase Vocoder Parameters

The guality of a given PV analysis depends on the parameter settings chosen
by the user. These settings must be adjusted according to the nature of the
sounds being analyzed apd the type of results that are expected. The main
parameters of the PV are the folllowing:

1. Frame size—mnumber of input samples to be analyzed at a time

2. Window type—selection of a window shape from among the standard
types {see the discussion later)

3, FFT size—the actnal number of samples fed to the FFT algorithm;
usually the neatest power of two that is double the frame size, where the
uni¢ of FFT size is referred to by points, as in a “i024-point FFT”
(equivaient to “1024-sample FFT™)

4. Hop size or overlap factor—time advance from one frame to the next

Now we discuss each parameter in turn. Then in the following section we
give rules of thumb for setting these parameters.

Frame Size

The frame size (ir samples) s important for two reasons. The first is that the
frame size determines one aspect of the tradeoff in time/frequency resolu-
tion. The larger the frame size, the greater the number of frequency bins,
but the lower the time resolution, and vice versa. If we are trying to analyze
sounds in the lower octaves with great frequency accuzacy, large frame sizes
are unavoidable. Since the FFT computes the average spectrum content
within a frame, the onset time of any spectrum changes within a frame
is lost when the spectrusn is plotted or transformed. (If the signal is simply
resynthesized, the temporal information is restored.) For high-frequency
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sounds, small frames are adequate, which are also more accurate in time
resolution. ‘ )

The second reason frame size is important is that large FFTs are slower
to caleulate than small FFTs. Following the rule of thumb that the calcula.
tion time for an FFT is proportional to N x log,(N), where A is the length
of the input signal (Rabiner and Gold 1975), it takes more than a thousand
times as long to calculate a 32,768-point FFT, for exampte, than a 64-point
FFT. The latency of a long FFT may be too onerous in a real-time system,

Window Type

Most PVs give the option of using one of a family of standard window
types, including Hamming, Hanning (or Hann; see Marple 1987), truncated
Gaussian, Blackman-Harris, and Kaiser (Harris 1978; Nuttall 1981; see also
appendix A). All are quasi-beli-shaped, and ali work reasonably well for
general musical analysis/resynthesis. For analyses where precision is impot-
tart (such as creating a systematic catalog of spectra for instrumental tones)
the choice of analysis window may be more critical. This is because window-
ing introduces distortion, and each type of window “bends” the analysis
plots in a slightly different way. For more on windows see appendix A.

FFT Size and Zero-padding

The choice of FFT size depends on the transformation one plans to apply
to the input sound. A safe figure for cross-syathesis is the nearest power of
two that is double the frame size. For example, a frame size of 128 samples
would mandate an FFT size of 256. The other 128 samples in the FFT are
set to zero—a process called zero-padding (see appendix A).

Hop Size

The hop size is the number of samples that the analyzer jumps along the
input waveform each time it takes a new spectrum measurement {figure
13.16). The shorter the hop size, the more successive windows overlap. Thus
some PVs specify this parameter as an overlap factor that describes how
many analysis windows cover each other, Regardless of how it is specified,
the hop size is usually a fraction of the frame size. A certain amount of
overlap (e.g., eight times) is necessary to ensure an accurate resynthesis.
Even more overlap may improve accuracy when the analysis data are going
to be transformed, but the computational cost is proportionally preater.
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Figure 13.16 Varying hop size for analysis windows that arc cig!}t san?pies long. Al
and % 2 are the starting times for each window. {a) Nonover%appmg_ windows wh'cn
hop size = window size. (5) Overlapping windows when hop size is Jess than win-
dow size. In this case the hop size is four samples.

Typical Parameter Values

No parameter settings of the PV are ideal for all soun.dg But- when the
parametess are set within a certain range, a variety of traditional mﬁtrumen-
tal sounds can be anatyzed and resynthesized with reasonable fidelity. Here
are some rales of thumb for PV parameter settings that may serve as a
starting point for more “tuned” analyses:

1. Frame size—IJarge enough to capture four periods of the lowgst fre-
quency of interest (Depalle and Poirot 1991). This is particularly impor-
tant if the sound is time-stretched; too small a frame size means that
individual pitch bursts are moved apart, changing the pitch, although
formants are preserved.

2. Window type-~any standard type except rectangular.

3. FFT size—double the frame size, in samples.
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4. Hop size—if the analysis data are going to be time-distorted, the recom.
mended hop size is an eighth of the frame size, in samples (ie., eight
times overlap). In general, the minimum technical criterion is that a]]
windows add to a constant, that is, all data are equally weighted. Thig
typically implies an overlap at the —3 dB point of the particular window
type chosen, from which can be derived the hop size.

Window Closing

Onee is not enough, {8. J. Marple 1987),

Any given setting of the window size results in an analysis biased toward
harmonics of the period defined by that window size. Frequency compo-
nents that fall cutside the frequency bins associated with a given window
size will be estimated incorrectly. Thus some spectrum analysis procedures
run the same sigral through the analyzer repeatedly with different settings
for the window size. A procedure that starts from high time and low fre-
quency resolution and works progressively to low time and high frequency
resotution is called window closing (Marple 1987).

Some STFT analyzers try o estimate the pitch of the signal in order to
determine the optimal window size. As mentioned earlier, pitch-synchro-
nous analysis works well if the sound to be analyzed has a basicaily har-
monic structure,

Tracking Phase Vocoder

Many current implementations of the PV are called tracking phase vocoders
{TPVs) because they follow or track the most prominent peaks in the spec-
trum over time (Dolson 1983; McAulay and Quatieri 1986; Quatieri and
McAulay 1986; Serra 1989; Maher and Beauchamp 1990; Walker and Fitz
1992). Unlike the ordinary phase vocoder, in which the resynthesis fre-
quercies are limited to harmonics of the analysis window, the TPV follows
changes in frequencies. The result of peak tracking is a set of amplitude and
frequency envelopes that drive a bank of sinusoidal oscillators in the resyn-
thesis stage.

The tracking process follows only the most prominent frequency compo-
nents. For these components, the result is a more accurate analysis than that
done with an equally spaced bank of filters (the traditional STFT imple-
mentation). The other berefit is that the tracking process creates frequency
and ampilitude envelopes for these components, whichk make them more
robust under fransformation than overlap-add frames. A disadvantage is
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that the quality of the analysis may depend more heavily on proper parame-
ter settings than in the regular STFT.

Operation of the TPV

A TPV carries out the following steps:

1. Compute the STFT using the frame size, window type, FFT size, and
hop size specified by the user

. Derive the squared magnitude spectrum in dB

. Find the bin numbers of the peaks in the spectrum

. Calculate the magnitnde and phase of each frequency peak

L

. Assign each peak to a frequency track by matching the peaks of the.
previous frame with those of the current frame (see the description of
peak tracking later)

6. Apply any desired modifications to the analysis parameters

7. If additive resynthesis is requested, generate a sine wave for each fre-
quency track and sum all sine wave components to create an output
signal; the instantaneous amplitede, phase, and frequency of each sine-
soidal component is calculated by interpolating values from frame to
frame (or use the alternative resynthesis methods described earlier)

Peak Tracking

The tracking phase vocoder follows the most prominent frequency trajec-
tories in the spectrum. Like other aspects of sound analysis, the precise
method of peak tracking shouid vary depending on the sound. The tracking
algorithm works best when it is tuned to the type of sound being ana-
lyzed-—speech, harmonic spectrum, smooth inharmonic spectrum, noisy,
ete. This section briefly explains more about the tracking process as a guide
to setting the analysis parameters.

The first stage in peak tracking is peak identification. A simple control
that sets the minimum peak height focuses the identification process on the
most significant landmarks in the spectrum (figure 13.17a). The rest of the
algorithm tries to apply a set of frequency guides that advance in time (figure
13.17b). The guides are hypotheses only; later the algorithm will decide
which guides are confirmed frequency tracks. The algorithm contirues the
guides by finding the peak closest in freguency to its current value. The
alternatives are as follows:
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Figure 13.17 Peak identification and tracking. {a) Isolation of a set of spectrum

peaks. (b} Fitting frequency guides to peaks. Guide 1 at the top did not wake up

after three frames, so it is deleted, Guide 2 is sti i i
¢ 4 N . is still sleeping. Guid
active. Guide 5 starts from a new peak, ping Cuides 3 and 4 are

w If it finds a match, the gnide continues.

= If a guide cannot be continued during a frame it is considered to be
“sleeping.”

# If the guide does not wake up after a certain number of frames—which
ma'y be specified by the user-—then it is deleted. It may be possible to
svy:tch on guide kysteresis, which continues tracking a guide that falls
stightly below the specified amplitude range. Hysteresis alleviates the audi-
ble problem of “switching™™ guides that repeatedly fade slightly, are cut to
zero by the peak tracker, and fade in again (Walker and Fitz 1’992}. With
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hysteresis the guide is synthesized at its actual value, which may be less
than the amplitude range, instead of with zero amphitude.

= If there is a conflict between guides, the closest guide wins, and the “loser”
looks for another peak within the maxirmum peak deviation, a frequency
band specified by the user.

® Ifthere are peaks that are not accounted for by current guides, then a new
guide begins,

The process of windowing may comprommise the accuracy of the tracking,
particularly in rapidly moving waveforms such as attack transients. Pro-
cessing sounds with a sharp attack in time-reversed order helps the tracking
algorithm (Serra 1989). This gives the partial trackers a chance to lock onto
their stable frequency trajectories before encountering the chaos of the at-
tack, resulting in less distortior. The data can be reversed back to its normal

order before resynthesis,
The next section discusses step 6, modification of the TPV analysis

envelopes.
Editing Analysis Envelopes

Changing the parameters of the resynthesis creates transformations in the
sound. By modifying the hop size in the playback, for example, one can
implement time expansion and compression effects. Due to the underlying
sinusoidal model, however, when a time expansion is performed on a com-
plex attack or a noisy sound, individual sine waves emerge and the noisy
quality is lost. The spectral modeling synthesis of Serra (1989), described
later, addresses this problem.

To create sophisticated musical transformations one must edit the analy-
sis data generated by the TPV—ihe frequency, amplitude, and phase curves
(Moorer 1978; Dolson 1983; Gordon and Strawn 1985). This laborious
process of transmutation is greatly aided by automatic data reduction pro-
cedures and graphical editor programs. (See chapter 4 for information-on
data reduction in additive synthesis, and see the section on spectrum editors
in chapter 16.) Table 4,1 in chapter 4 Lists some of the musical effects made
possible by modification of PV spectrum data.

Cross-synthesis with the Phase Yocoder

Another possibility for sourd transformation with less editing is cross-syn-
thesis. Cross-synthesis is not one technique; it takes a number of forms. The
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most common form uses the magnitude functions from one spectrum to
control the magnitude functions of another. That is, the strength of each
frequency component in sound A4 scales the strength of the corresponding
fre'que.ncy component in sound B. This is implemented by mutiplying each
point in spectrum 4 by each corresponding point in spectrum B, Another
term for this type of cross-synthesis is filtering by convolution (see chapter 10
for more o convolution). Musically, cross-synthesis is most effective whep
one o.f the sounds being filtered has a broad bandwidth, like a noise source
By using a phase vocoder with two inputs, cross-synthesis is basically auto-'
matic (Depalle and Poirot 1991). Anotker type of cross-synthesis uses the
magnitude functions from one sound with the phase functions of another
sound to create a hybrid sound effect (Boyer and Kronland-Martinet 1989),

Musical guidelines for cross-synthesis with the PV are much the same as
for‘ cross-synthesis by fast convolution. See chapter 10 for more on these
guidelines.

Computational Cost of the Phase Vocoder

The phase vocader is one of the more computationaliy expensive operations
f'wailable to musicians, particularly when tracking is carried out. The track-
ing ;?hase vocoder soaks up large quantities of computer power even though
the inner core is implemented using the efficient FFT algorithm. The PV
a‘iso generates a large amount of analysis data; in some cases this is many
times .greater than the size of the sample data being analyzed. A panoply of
techniques may be applied to reduce computation and conserve space. For
examl?ie, the envelopes generated by the TPV may be computed at a lower
sampling rate. This may not compromise the audio quality since these con-
trol functions tend to change more slowly than the audio sampling rate.
Before resynthesis they can be restored to the original sampling rate by
interpolation. Other data reduction methods can also be applied; see the
discussion of data reduction in chapter 4. ’

Accuracy of Resynthesis

The accuracy of all Fourier-based resynthesis is limited by the resohution of
the analysis procedures. Small distortions introduced by numerical round-
off, windowing, peak-tracking, undersampling of envelope functions, and
other aspects of the analysis introduce errors. In a well-implemented PV,
when the analysis parameters are properly adjusted by a skilied engineer
and no modifications are made to the analysis data, the error is negligible
perceptually.

Spectrum Analysis

The tracking PV, on the other hand, interprets the raw analysis data i
constracting its tracks, It discards ali information that does not contribute
to 2 track. This sifting may leave out significant portions of sound energy,
particularly noisy, transient energy. This can be demonstrated by subtract-
ing the resynthesized version from the original signal to vield a residual
signal (Strawn 1987a; Gish 1978, 1992; Serra 1989). One can consider this
residual or difference to be analysis/resynthesis error. It is common to refer
to the resynthesized, quasi-harmonic portion as the “clean” part of the
signal and the error or noise component as the “dirty” part of the signal.
For many sounds (i.e., those with fast transients such as in cymbal crashes),
the errors are quite audible. That is; the “clean” signal sounds unnaturally
“ganitized” or sinusoidal, and the “dirty” signal, when heard separately,
contains the missing grit, {See the section on analysis of inharmonic and
noigy sounds in a moment.)

For efficiency, some PVs have the option of discarding phase informa-
tion, saving only the ampfitude and frequency data. This results in 2 data
reduction and corresponding savings in computation time, but also de-
grades the accuracy of the resynthesis. Without proper phase data, a resyn-
thesized waveform, for example, does not resemble the original, although it
has the same basic frequency content (Serra 1989). In certain steady state
sounds, a rearrangement of phases may not be audible. But for high-fidelity
reproduction: of transients and quasi-steady-state tones, phase data help
reassemble short-lived and changing components in their proper order and
are therefore valuable.

Problem Sounds

The PV handles harmonic, static, or smoothly changing tones best. Trans-
formations such as timescale expansion and compression on these sounds
result in natural sounding effects. Certain sounds, however, are inherently
difficult to modify with PV techniques. These include noisy sounds such as
raspy or breathy voices, motors, any sound that is rapidly changing on &
timescale of a few miliseconds, and sounds that contain room noise. Trans-
formations on these types of sounds may result in echoes, flutter, unwanted
resonances, and undesirable colored reverberation effects. These are mainly
due to phase distortions that occur when the analysis data is transformed.

@

Analysis of Inharmonic and Noisy Sounds

Demonstrations prove that tracking phase vocoders can analyze and resyn-
thesize many inharmonic sounds, including bird songs (Serra and Smith
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. & sinusoidal model, operations on noisy sounds often result in clusters of
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1990), and tuned percussion tones (zongs, marimba, xylophone, efc.),
since the TPV is based on Fourier analysis, it must translate noisy az
inharmonic signals into combinations of pericdic sinusoidal functions, Pa
ticulasly for noisy signals, this can be a costly process from a storage ay
computational standpoint. To synthesize a simple noise band, for eXamp
requires an ever-changing blend of dozens of sine waves. Storing the contr
functions for these sines fills up a great deal of space. In some TPV thi
amounts to more than ten times as many bytes as the original sound sap,
ples. Resynthesizing the sines demands a tremendous amount of comput

tion. Moreover, since the transformations altowed by the TPV are based on’

sinusoids that have lost their noisy quality.
Deterministic Plus Stochastic Techniques

To handie such signals better, the TPV has been extended to make it more
effective in musical applications. Serra {1989} added filtered noise to the
inharmonic sinusoidal mode! in spectral modeling synthesis {SMS). (See also
chapter 4 and Serra and Smith 1990.) As figure 13.18 shows, SMS reduces
the analysis data into & deterministic component (prominent narrowband
components of the original sound) and a stochastic component. The deter-
ministic component tracks the most prominent frequencies in the spectrum.
SMS resynthesizes these tracked frequencies with sine waves. The tracking
follows only the most preminent frequency components, discarding other
energy in the signal. Thus SMS also analyzes the residue (or residual), which
is the difference between the deterministic component and the otiginal spec-
trumn. This is used to synthesize the stochastic component of the signal. The
residual is analyzed and approximated by a collection of simplified spec-
trum envelopes. One can think of the resynthesis as passing white noise
through filters controlled by these envelopes. In the implementation, how-
ever, SMS uses sine waves with random phase values, which is equivalent to
the filtered noise interpretation.

The SMS representation, using spectrum envelopes and sine waves, rather
than a filter barnk, makes it easier to modify the stochastic part in order
to transform the sound. Graphical operations on envelopes are intuitive to a
musician, whereas changing filter coefficients leads to technical complica~
tions. A problem with SMS is that the perceptual link between the deter-
ministic and stochastic parts is delicate; editing the two parts separately may
lead to a loss of perceived fusion between them.
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Figure 13.18 Analysls part of X. Serra’s spectral modeling syn%hesis technique.
The deterministic part follows a strictly sinusoidal additive synthesis app:‘oach..’i‘he
stochastic part of the signal derives from the difference beiwe'en the resynthesis of
the deterministic (quasi-harmenic) part and the STFT of the mpat.waveform. The
system simplifies each residual component by fitting an 'envelo;)e tf’ ft' The enveiope
represensation makes the stochastfc part easier to modify by musicians. The resyn-
thesis of the stochastic part then uses these envelopes with a random phase compo-
nent—egquivaient to filtered white noise.
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Constant ( Filter Bank Analysis

Various spectrum analysis methods can be grouped uader the rubric of
constant @ filter bank techniques—applied in audio research since the late
1970s (Petersen 1980; Petersen and Boll 1983; Schwede 1983; Musicus,
Stautner, and Anderson 1984). Within this family are the so-called auditory
transform (Stautner 1983) and the bounrded-Q frequency transform (Mont-
Reynaud 1985a; Chafe et al. 1985). The wavelet transform, discussed in the
next section, could also be classified as a constant @ technique.

Recall from chapter 5 that Q can be defined for a bandpass filter as the
ratio of its center frequency to its bandwidth, In a constant O filter bank,
each filter has a similar or the same Q. Thus the bandwidth of the high-
frequency filters is much broader than those of the low-frequency filters,
because, like musical intervals, constant @ analyzers work on a logarithmic
frequency scale. For example, a one-third octave filter bank is a constant ¢
device.

Constant Q Versus Traditional Fourier Analysis

The constant ¢ filter bank’s logarithmic frequency analysis is different from
regular Fourier analyzers. Fourier analysis divides the spectrum into a set
of equally spaced frequency bins, where there are half as many bins as there
are samples taken as input (for real signals, negative frequency compon-
ents duplicate the positive frequency compenents). In Fourier analysis, the
width of a bin is a constant equal to the Nyquist rate divided by the number
of bins. For example, for a 1024-point FFT a¢ a sampling rate of 48 KHz,
the width of 2 bin is 24,000/1024, or 23.43 Hz.

When the results of the FFT are translated to a logarithmic scale (such as
musical octaves) it is clear that the resolution is worst in the lower octaves,
To separate two low-frequency tones B (41.2 Hz) and F1 (43.65 Hz) that
are a semitone apart requires a farge time window (e.g., 2'* or 16,384 sam-
ples). But to use the same resolution at higher frequencies is a waste, since
human beings have difficulty distinguishing between two tones that are 2.45
Hz apart in the octave between 10 and 20 K¥Hz. Hence there is a mismatch
between the fogarithmic continuum of frequencies that we hear and the
linear frequency scale of FFT analysis. This problem is addressed by
methods like the constant @ transform, in which the bandwidth varies
proportionally with frequency, That is, the analysis bands are thin for low
frequencies and wide for high frequencies (figure 13.19). Thus in constant
¢ analysis the length of the analysis window varies according to the fre-
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Figure 13.19  Spacing of filters for constant O versus Fourier techniques. {a} Using
only 43 filters (19 of whick are shown), the constant (2 method achieves 1/4-octave
frequency resolution from 20 Hz to 21 KHz (5) Fourier filter spacing, with 2
band every 46 Hz. Using almost 12 times as many filters (512, or which 8 are
shown}, Fourier methods still do not have the iow-frequency resolution as constant
¢ methods. The Fourier method wilt have 46 Hz resolution throughout the audio
bandwidth, even in the highest octave where the ear cannot accurately resolve these
differences.

quency being apalyzed. Long windows analyze low frequencies, and short
windows analyze high frequencies.

Constant ¢ filter banks do not avoid the uncertainty relationship be-
tween time and frequency, discussed earlier, but temporal uncertainty is
concentrated in the lower octaves, where the analysis bands are narrow, and
therefore the windows and the filter impulse responses are long. Since sonic
transients (attacks) tend to contain high-frequency componenis, a constant
© response has the advantage of time localization in high frequencies with
frequency localization in low frequencies.

Another attractive feature of constant (2 techniques is that the human ear
has a frequency response that resembles constant ¢ response, particularly
above 500 Hz (Scharf 1961, 1970). That is, the auditory system performs a
type of filter bank analysis with a frequency dependent bandwidth. These
measured auditory bandwidths are of such & fundamental nature that they
are called critical bands. {See chapter 23 for more on critical bands.) Figure
13.20 plots center frequencies versus bandwidths for a bark of 23 bandpass
filters used in the so-called auditory transform, which was based on ar




